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INTRODUCTION
In recent years, there has been remarkable progress in 
artificial intelligence (AI) research and its application in 
practical medicine, leading to a heightened interest in 
decision-making challenges. Many researchers report 
significant success in recognizing pathological process-
es [1-4]. This success is attributed mainly to advances 
in neural networks and profound learning principles. 
A key feature of these networks is their ability to self-
learn, which represents an essential aspect of the AI 
state space [5]. Another vital aspect is generalization, 
defined as the ability to apply knowledge from specific 
cases to more general problems. However, several seri-
ous challenges remain. One of the primary issues is the 
difficulty of providing clear explanations for diagnoses, 
which can be unsatisfying for medical professionals. 
Applying clinical precedent logic does not always meet 
the needs of specialists. In previous work, we proposed 
using the “Ex juvantibus” strategy, which theoretically 
could lead to more effective outcomes [6]. Nonetheless, 
this approach is not universally applicable, mainly be-
cause it can be challenging to predict the dynamics of 
a pathological process.

Significant difficulties are also associated with the 
principles of semantic justification of the conclusion 
due to information correlation, lack of uniform classi-
fications, etc. 

AIM
The study aims to substantiate the transition strategy 
from the topology of the feature and state space to a 
single structured metric space for decision-making.

MATERIALS AND METHODS
The evolution of computer-assisted disease diagnosis 
spans decades, beginning with the foundational works 
of Ledley and Lusted [7, 8] in the mid-20th century. 
Since then, substantial progress has been made, with 
the modern era marked by the successful application 
of machine learning (ML) methods as a central driver of 
diagnostic innovation. Currently, a broad array of auto-
matic classification techniques is available, supported 
by foundational ML methodologies such as clinical 
precedent-based approaches, hyperplane, and hyper-
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rectangle strategies, fuzzy logic systems, probabilistic 
algorithms (e.g., the Bayesian framework and Wald’s 
sequential statistical analysis), as well as perceptron 
and multilayer perceptron models.

This study introduces a novel hyperrectangle-based 
algorithm referred to as the Multiscale Classifier (MSC), 
implemented through an inductive decision tree frame-
work [9]. The MSC algorithm applies to N-dimensional 
classification problems by recursively dividing the fea-
ture space in half, with tree growth regulated via logical 
minimization. Subsequent stages in the classification 
process necessitate decision trees that account for the 
cost of misclassification. It has been demonstrated that 
such models support diverse classification operating 
modes, which can be visualized through ROC curves. 
The MSC offers several notable advantages over con-
ventional hyperrectangle-based methods: it enables 
incremental learning, utilizes a non-binary tree struc-
ture, and allows reverse decision propagation, among 
other enhancements.

Additionally, a feature extraction methodology based 
on scale-spatial analysis was proposed and applied to 
selected diagnostic indicators. Empirical findings sug-
gest that this approach yields improved performance 
compared to traditional feature extraction techniques.

A complementary investigation evaluated the perfor-
mance of various machine learning algorithms across 
six “real-world” medical diagnostic datasets [10]. Each 
algorithm was assessed following principles of evi-
dence-based medicine, using metrics such as overall 
accuracy, sensitivity, specificity, area under the ROC 
curve (AUC), chi-square test statistics, training time, 
and interpretability. Analysis of variance (ANOVA) 
was employed to assess the statistical significance of 
observed differences in cross-validated accuracy and 
AUC outcomes.

The findings highlight the advantages of AUC over 
precision, particularly its higher statistical sensitivity, 
threshold independence, and robustness to variations 
in prior class probabilities. While exemplar-based 
and hyperplane-oriented methods showed slightly 
higher classification accuracy, hyperrectangle-based 
approaches—including MSC—offered superior inter-
pretability and required fewer computational resources. 
The Multiscale Classifier demonstrated competitive 
performance among evaluated models. The authors 
propose that MSC holds strong potential as a supple-
mentary tool for enhancing diagnostic accuracy in 
medical machine-learning applications. 

It is also essential to briefly discuss the role of so-called 
naive algorithms. These approaches are typically de-
fined by their simplicity and reliance on suboptimal or 
heuristic-based problem-solving strategies. Often, they 

employ straightforward procedures without leveraging 
advanced optimization techniques or computational 
refinements.

Study [1] underscores that standard datasets related 
to chronic diseases can be compiled from various glob-
al sources. However, datasets about specific chronic 
conditions frequently contain ambiguous class instanc-
es—cases that exhibit features representative of two or 
more diagnostic categories. Such ambiguity introduces 
classification challenges and increases the likelihood 
of reduced model performance in machine learning 
systems. A key contribution of the referenced study is 
the incorporation of fuzzy clustering, which is imple-
mented through the method of rough averages. The 
study evaluated several machine learning algorithms, 
including the naive Bayes (NB) classifier, Boltzmann 
machine, k-nearest neighbor (kNN), support vector 
machine (SVM), decision tree, and logistic regression 
models. The dataset used for analysis was drawn from a 
widely recognized machine-learning repository focused 
on chronic disease data. Experimental results confirmed 
that the proposed system effectively supports chronic 
disease diagnostics. Among the evaluated algorithms, 
the naive Bayes classifier achieved the highest per-
formance in classifying diabetic conditions, with an 
accuracy rate of 80.55%. For relatively straightforward 
clinical scenarios, naive algorithms deliver reliable out-
comes and, due to their computational efficiency and 
low implementation cost, may be considered optimal 
in such contexts.

Nonetheless, regardless of the mathematical 
strengths of certain classification approaches, signifi-
cant challenges persist regarding the selection of rele-
vant features associated with pathological processes. 
These challenges stem largely from the substantial 
variability in clinical presentations, the coexistence of 
multiple disease combinations, and the resultant over-
lap in symptomatology. For instance, the combinatorial 
possibilities of clinical features across just 100 patho-
logical processes yield millions of potential disease sce-
narios. Consequently, assembling a sufficiently robust 
statistical foundation for algorithm training becomes a 
formidable task, even when employing globally acces-
sible, open healthcare data systems.

REVIEW AND DISCUSSION
The evolution of computer-assisted disease diagnosis 
spans decades, beginning with the foundational works 
of Ledley and Lusted [7, 8] in the mid-20th century. 
Since then, substantial progress has been made, with 
the modern era marked by the successful application 
of machine learning (ML) methods as a central driver of 
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diagnostic innovation. Currently, a broad array of auto-
matic classification techniques is available, supported 
by foundational ML methodologies such as clinical 
precedent-based approaches, hyperplane, and hyper-
rectangle strategies, fuzzy logic systems, probabilistic 
algorithms (e.g., the Bayesian framework and Wald’s 
sequential statistical analysis), as well as perceptron 
and multilayer perceptron models.

This study introduces a novel hyperrectangle-based 
algorithm referred to as the Multiscale Classifier (MSC), 
implemented through an inductive decision tree frame-
work [9]. The MSC algorithm applies to N-dimensional 
classification problems by recursively dividing the fea-
ture space in half, with tree growth regulated via logical 
minimization. Subsequent stages in the classification 
process necessitate decision trees that account for the 
cost of misclassification. It has been demonstrated that 
such models support diverse classification operating 
modes, which can be visualized through Receiver Oper-
ating Characteristic (ROC) curves. The MSC offers several 
notable advantages over conventional hyperrectan-
gle-based methods: it enables incremental learning, 
utilizes a non-binary tree structure, and allows reverse 
decision propagation, among other enhancements.

Additionally, a feature extraction methodology based 
on scale-spatial analysis was proposed and applied to 
selected diagnostic indicators. Empirical findings sug-
gest that this approach yields improved performance 
compared to traditional feature extraction techniques.

A complementary investigation evaluated the perfor-
mance of various machine learning algorithms across 
six “real-world” medical diagnostic datasets [10]. Each 
algorithm was assessed following principles of evi-
dence-based medicine, using metrics such as overall 
accuracy, sensitivity, specificity, area under the ROC 
curve (AUC), chi-square test statistics, training time, 
and interpretability. Analysis of variance (ANOVA) 
was employed to assess the statistical significance of 
observed differences in cross-validated accuracy and 
AUC outcomes.

The findings highlight the advantages of AUC over 
precision, particularly its higher statistical sensitivity, 
threshold independence, and robustness to variations 
in prior class probabilities. While exemplar-based 
and hyperplane-oriented methods showed slightly 
higher classification accuracy, hyperrectangle-based 
approaches—including MSC—offered superior inter-
pretability and required fewer computational resources. 
The Multiscale Classifier demonstrated competitive 
performance among evaluated models. The authors 
propose that MSC holds strong potential as a supple-
mentary tool for enhancing diagnostic accuracy in 
medical machine-learning applications. 

It is also essential to briefly discuss the role of so-called 
naive algorithms. These approaches are typically de-
fined by their simplicity and reliance on suboptimal or 
heuristic-based problem-solving strategies. Often, they 
employ straightforward procedures without leveraging 
advanced optimization techniques or computational 
refinements.

Study [1] underscores that standard datasets related 
to chronic diseases can be compiled from various glob-
al sources. However, datasets about specific chronic 
conditions frequently contain ambiguous class instanc-
es—cases that exhibit features representative of two or 
more diagnostic categories. Such ambiguity introduces 
classification challenges and increases the likelihood 
of reduced model performance in machine learning 
systems. A key contribution of the referenced study is 
the incorporation of fuzzy clustering, which is imple-
mented through the method of rough averages. The 
study evaluated several machine learning algorithms, 
including the naive Bayes (NB) classifier, Boltzmann 
machine, k-nearest neighbor (kNN), support vector 
machine (SVM), decision tree, and logistic regression 
models. The dataset used for analysis was drawn from a 
widely recognized machine-learning repository focused 
on chronic disease data. Experimental results confirmed 
that the proposed system effectively supports chronic 
disease diagnostics. Among the evaluated algorithms, 
the naive Bayes classifier achieved the highest per-
formance in classifying diabetic conditions, with an 
accuracy rate of 80.55%. For relatively straightforward 
clinical scenarios, naive algorithms deliver reliable out-
comes and, due to their computational efficiency and 
low implementation cost, may be considered optimal 
in such contexts.

Nonetheless, regardless of the mathematical 
strengths of certain classification approaches, signifi-
cant challenges persist regarding the selection of rele-
vant features associated with pathological processes. 
These challenges stem largely from the substantial 
variability in clinical presentations, the coexistence of 
multiple disease combinations, and the resultant over-
lap in symptomatology. For instance, the combinatorial 
possibilities of clinical features across just 100 patho-
logical processes yield millions of potential disease sce-
narios. Consequently, assembling a sufficiently robust 
statistical foundation for algorithm training becomes a 
formidable task, even when employing globally acces-
sible, open healthcare data systems.

USING OF THE FEATURE SPACE
Pattern recognition in biomedical datasets often proves 
challenging due to the presence of numerous irrelevant 
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or redundant attributes. Implementing a robust feature 
selection (FS) strategy is essential to eliminate non-in-
formative or redundant variables. The primary objective 
of FS methods is to enhance classification performance 
by reducing dimensionality and retaining only the 
most relevant features [4]. Accurate execution of the 
data cleaning phase is pivotal to achieving optimal ma-
chine learning outcomes. This empirical investigation 
presents a classification methodology for biomedical 
data using FS techniques. The proposed framework 
incorporates three soft computing-based optimization 
algorithms: Teaching–Learning-Based Optimization 
(TLBO), Elephant Herding Optimization (EHO), and a 
hybridized approach that combines both strengths.

EHO is a relatively novel swarm-based metaheuristic 
search algorithm inspired by the social behavior of el-
ephant herds [11]. One of the first applications of this 
method was to solve general optimization problems. 
The method reflects two different behavioral stages in 
the social dynamics of elephants: in nature, elephants 
belonging to different clans live together, but when 
they become adults, they leave their family group.  
These phenomena are modeled using two operators - 
the group update operator and the separation operator 
- both of which increase the diversity of the population 
at later stages of the search. The cited study [11] demon-
strated that EHO performs efficiently when compared 
with other established metaheuristic algorithms.

Although the aforementioned algorithms have been 
employed in previous research, their efficacy in solving 
FS challenges—particularly in disease prognosis—has 
not only been validated but also extended into new 
application domains. For example, the referenced 
study  [4] assessed classification performance in dif-
ferentiating benign and malignant tumors using the 
publicly available Wisconsin Diagnostic Breast Cancer 
(WDBC) dataset. To mitigate the risk of overfitting, five-
fold cross-validation was employed. Evaluation metrics 
included sensitivity, specificity, accuracy, precision, 
reliability, and area under the receiver operating charac-
teristic curve (AUC). The highest recorded classification 
accuracy using the proposed FS approach was 97.96%.

USING THE STATE SPACE
Tasks framed within the state space differ markedly 

from those in the feature space. Recent research has 
focused on managing fuzzy boundaries between 
states [12]. For instance, a breast cancer diagnostic 
algorithm has been proposed that consists of a two-
part structure. The first part includes four sequential 
steps: preprocessing of image data; image analysis 
using wavelet transformation; feature extraction using 
wavelet-derived parameters to isolate the most signif-
icant characteristics via standard separation methods; 

classification using fuzzy logic to determine whether 
the tumor is benign or malignant. This algorithm has 
demonstrated a classification accuracy of 98%.

A persistent challenge in this domain is the dynamic 
nature of disease characteristics over time. Consequent-
ly, state-space modeling offers a compelling framework 
for estimating the evolving states of dynamic biological 
systems. The application of recursive Bayesian state 
estimation enables efficient model updates based 
on new observations, making this approach particu-
larly well-suited to settings characterized by noisy or 
incomplete data. Christopher D. Prashad employed 
this methodology in his research on infectious disease 
modeling [13]. The primary objective was to enhance 
model accuracy and computational efficiency when 
applying state space modeling principles to epidemic 
data. The study addressed key issues such as parameter 
uncertainty and identification logic, which are critical in 
the context of epidemiological forecasting [14]. Com-
pared to traditional frequency-based models, Bayesian 
approaches offer a more robust mechanism for incor-
porating uncertainty into predictive models, thereby 
deepening our understanding of disease dynamics.

The study further demonstrated the utility of state 
space modeling, recursive Bayesian estimation, dynam-
ic regression, and correlation analysis for analyzing pub-
lic health data. These tools significantly enhance both 
descriptive and predictive capabilities when modeling 
dynamic systems. The study results demonstrate the 
ability of the models to recognize key epidemiological 
trends.

The authors underline that future work could explore 
ways to optimize the algorithm for applications with 
real-time or streaming data, focusing on reducing 
computational complexity. In addition, practical imple-
mentation and algorithmic integration into real-time 
systems such as patient monitoring, long-term manage-
ment of pathological conditions, and clinical decision 
support are promising areas for further development.

The recursive Bayesian approach to state estimation 
represents a significant advancement in state space 
modeling. Its inherent adaptability to changing con-
ditions, coupled with its capacity to maintain high 
computational accuracy, renders it particularly valuable 
in scenarios requiring precise state estimation under 
conditions of uncertainty. Nevertheless, several chal-
lenges remain. These include the temporal variability of 
clinical manifestations of diseases, errors in identifying 
key pathological indicators, and the difficulty of quickly 
comparing the feature space with the state space. To 
solve these problems, we are currently considering the 
integration of ontological tools into the technological 
process.
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1.	� Cleaning the data, evaluating the degree of inter-fea-
ture association, and assessing the informativeness, 
relevance and pertinence of features.

2.	� Establishing the relationships between distinct 
states, validating clusters of features corresponding 
to particular states, and evaluating the utility of naive 
Bayesian algorithms. Where appropriate, dynamic 
identification techniques and ontological modeling 
may also be incorporated.

The classification scheme shown in Figure 1 allows for 
the temporal inclusion of both the grouping of “similar” 
components into separate clusters and the reverse 
process, if necessary. Accordingly, disease classifica-
tion refers to the systematic practice of distinguishing 
between different types of diseases by organizing 
conditions into separate categories based on certain 
criteria of similarity and difference [16]. The definition 
of a disease is influenced not only by the development 

The use of ontologies offers a distinct advantage: 
individual classification errors do not disrupt the over-
all reasoning process concerning the configuration or 
“portrait” of features that typify a given pathological 
process. This holds true whether the condition involves 
a single disease or a group of diseases sharing a com-
mon pathogenesis. A critical component of the disease 
classification process is the creation of a comprehensive 
bank of options for the development of pathological 
processes, which requires the use of artificial intel-
ligence. It should be noted that the effectiveness of 
AI-based solutions in this context depends to some 
extent on the degree and validity of generalization of 
conditions, as well as on the peculiarities of structuring 
medical information [15].

Based on this rationale, a general framework for clas-
sification and diagnosis that concurrently employs both 
feature and state spaces may be outlined as follows:

Fig. 1. General Scheme of Classifi-
cation and Diagnosis Through the 
Simultaneous Use of Feature and State 
Spaces
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result of a continuous interaction between internal 
physiological mechanisms and external environmental 
factors. Accordingly, classification algorithms should 
be designed with the principles of scalability and 
communication in mind, reflecting the complex and 
interconnected nature of biological systems.

CONCLUSIONS
1.	� It is proposed that when using artificial intelligence 

in healthcare for informed decision-making, two 
spaces - states and feature - should be used simul-
taneously. 

2.	� The efficiency of classification can be significantly 
increased by adopting the principles of dynamic 
classification.

3.	� The effectiveness of using AI in healthcare depends 
to some extent on the level of generalization and 
the specifics of structuring medical information.

4.	� A critical and promising component of AI implemen-
tation is the development of a subject area ontol-
ogy, which serves as a fundamental element at the 
preparatory stage of AI integration into healthcare.

of medical science, but also by other factors, such 
as the capabilities of the relevant equipment, social 
problems, etc.

It is important to emphasize that the emergence of 
the paradigm of systems biology and systems medicine 
changes almost the entire strategy of disease classifi-
cation, as well as diagnostic and prognostic processes. 
The new taxonomy requires the inclusion of the prin-
ciples of systems science, namely, “complex systems, 
especially in biology and medicine, consist of dynamic, 
adaptive subsystems. These subsystems are controlled 
by competing communication channels and resulting 
emergent properties. Integration of various spatial and 
temporal modeling techniques is essential to refine and 
extend this new taxonomy [17, 18]. Systems biology and 
systems medicine are the means to consider the disease 
as a process and a reaction, the interface of triggering 
agents and the ongoing adaptation of the organism 
[19, 20]. From the point of view of systems medicine, 
the classification of diseases should take into account 
this expanded concept, giving the disease itself the 
characteristics of the involvement of systemic biology. 
In other words, disease manifestations are seen as the 
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