**ORIGINAL ARTICLE** 





# Impact of lifestyle modification interventions on metabolic syndrome and obesity in adults

Svitlana V. Kucher¹, Ulyana O. Mudra¹, Vitalii V. Tkachuk², Mariia M. Ruda¹, Tetiana Yu. Chernets¹, Iryna M. Nikitina<sup>3</sup>, Volodymyr H. Dzhyvak<sup>1</sup>

1. YA. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE <sup>2</sup>ODESA NATIONAL MEDICAL UNIVERSITY, ODESA, UKRAINE 3SUMY STATE UNIVERSITY, SUMY, UKRAINE

#### **ABSTRACT**

Aim: The aim of this review article is to provide a comprehensive analysis of the impact of lifestyle interventions — dietary modifications, physical activity, and behavioral strategies — on the management of metabolic syndrome and obesity in adults.

Materials and Methods: This review is based on an analysis of recent studies, systematic reviews, and meta-analyses that investigate the relationship between lifestyle modifications and improvements in MetS and obesity. Sources include peer-reviewed research articles, clinical trials, and public health data on dietary interventions, physical activity, and behavioral strategies. The effectiveness of interventions was assessed through key metabolic parameters such as weight loss, waist circumference reduction, insulin sensitivity, lipid profiles, and cardiovascular health markers.

Conclusions: Lifestyle interventions play a crucial role in managing MetS and obesity by addressing the underlying metabolic dysfunctions and reducing the risk of related diseases, including cardiovascular disease and type 2 diabetes. However, long-term adherence remains a significant challenge. Emerging approaches, such as technology-assisted self-monitoring and group-based programs, offer promising strategies to enhance engagement and effectiveness. Future efforts should focus on scalable, inclusive, and sustainable interventions to reduce the global burden of MetS and obesity.

**KEY WORDS:** Metabolic syndrome, obesity, lifestyle interventions, Mediterranean diet, time-restricted eating, physical activity

Wiad Lek. 2025;78(9):1857-1865. doi: 10.36740/WLek/212515 **DOI 2** 



# INTRODUCTION

Metabolic syndrome (MetS) and obesity have emerged as escalating global health concerns, contributing significantly to the growing burden of noncommunicable diseases (NCDs) such as cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) [1]. MetS is characterized by a constellation of interrelated conditions, including abdominal obesity, hypertension, dyslipidemia, and insulin resistance, which synergistically amplify the risk of heart disease, stroke, and diabetes [2]. This multifaceted syndrome serves as both a warning sign and a critical target for early intervention to mitigate the progression of NCDs [3]. Obesity is defined as an excessive accumulation of adipose tissue in the body, usually measured by body mass index (BMI). A BMI of ≥30 kg/m<sup>2</sup> is a generally accepted criterion for the diagnosis of obesity. It is a condition that results primarily from an imbalance between energy intake and energy expenditure,

although genetic, endocrine and socioeconomic factors also play an important role [4]. Obesity itself is a risk factor for a number of diseases, including cardiovascular disease, type 2 diabetes, osteoarthritis and certain types of cancer. MetS is characterized by a constellation of interrelated conditions, including abdominal obesity, hypertension, dyslipidemia, and insulin resistance, which synergistically amplify the risk of heart disease, stroke, and diabetes. This multifaceted syndrome serves as both a warning sign and a critical target for early intervention to mitigate the progression of NCDs. The global prevalence of metabolic syndrome has witnessed a sharp increase over the past two decades, now affecting approximately one-quarter of the world's population [5]. This alarming statistic underscores the urgent need for coordinated public health strategies to address the underlying causes and modifiable risk factors. Similarly, obesityxa major driver of MetS – has reached epidemic proportions, with rising

trends observed across all regions, age groups, and socioeconomic strata [6]. For example, data from England illustrate the pervasive nature of this issue. Recent studies reveal that eight out of ten men aged 55 to 64 are classified as overweight or obese, with body mass index (BMI) measurements exceeding healthy thresholds [7]. This demographic trend reflects broader patterns of sedentary lifestyles, increased caloric intake, and the widespread availability of ultra-processed foods, all of which contribute to the global surge in obesity rates.

The financial burden associated with MetS and obesity is both substantial and far-reaching, reflecting their widespread prevalence and the complexity of managing related health conditions. In the United States, the economic impact of obesity alone has reached staggering proportions, with obesity-related medical costs estimated at \$173 billion annually as of 2019 [8]. The economic ramifications of MetS and obesity are similarly profound in Europe, with significant healthcare expenditures attributed to these conditions. In Germany, the healthcare costs associated with MetS in patients with hypertension were estimated at €24.4 billion, reflecting the high prevalence of hypertension as a key component of MetS. In Spain, the economic burden of MetS-related healthcare was calculated at €1.9 billion, highlighting the strain on the national healthcare system. Italy reported healthcare costs of €4.9 billion attributable to MetS, with projections suggesting continued growth in expenditures due to the rising prevalence of obesity and related metabolic disorders [9].

Individuals with metabolic syndrome and obesity are at markedly elevated risks of developing numerous serious and potentially life-threatening health conditions [10,11]. These risks are particularly pronounced in individuals with an «apple-shaped» body, where fat is predominantly stored in the abdominal region. This pattern of fat distribution, known as central or visceral obesity, is strongly associated with metabolic disturbances and systemic inflammation, which underlie the development of various diseases. Research shows that people with apple-shaped bodies – those with a wider midsection and less defined waist – face a higher risk of serious health problems compared to their pear-shaped counterparts, who tend to carry excess weight in the hips, buttocks and thighs. Findings from systematic review and meta-analysis Ahmad Jayedi et al. (2020) support the assertion that individuals with an "apple shape" (central obesity) have a higher risk of all-cause mortality compared to those with a "pear shape." [12].

Given the rising prevalence and substantial economic and health burdens of MetS and obesity, there is an urgent need for effective strategies to mitigate these conditions [13]. Lifestyle interventions, including dietary modifications, physical activity, and behavioral changes, are critical components in the prevention and management of MetS and obesity.

Dietary interventions play a key role in the fight against metabolic syndrome and obesity, with certain dietary patterns showing significant health benefits. Among these, the Mediterranean diet has been widely studied and consistently associated with positive outcomes, including weight loss, reduced body fat, and reduced risk of non-communicable diseases such as type 2 diabetes and cardiovascular disease. The Mediterranean diet is characterized by a high intake of fruits, vegetables, whole grains, legumes, nuts, and olive oil; moderate consumption of fish and poultry; and limited intake of red meat and processed foods. Its unique composition provides a balance of monounsaturated fats, fiber, antioxidants, and antiinflammatory nutrients [14]. Research highlights the effectiveness of the Mediterranean diet in managing obesity and metabolic disorders [15]. For example, the PREDIMED trial demonstrated that individuals adhering to the Mediterranean diet supplemented with extra virgin olive oil or nuts experienced a significant reduction in the risk of major cardiovascular events. The mechanisms of action include the diet's ability to improve insulin sensitivity and reduce systemic inflammation. Olive oil and nuts provide monounsaturated fats, which lower LDL cholesterol and increase HDL cholesterol. Dietary fiber from fruits and whole grains promotes satiety and supports gut health, which can contribute to weight loss and the prevention of insulin resistance. Additionally, Sandra Martín-Peláez et al. (2020) found that the Mediterranean diet significantly reduces the risk of type 2 diabetes in individuals at high risk [16]. The long-term sustainability of the Mediterranean diet makes it particularly effective for lifestyle interventions targeting MetS and obesity. Its palatability and cultural adaptability increase adherence rates, which are critical for achieving meaningful health improvements.

Regular physical activity offers numerous health benefits and is a crucial tool in combating obesity and its associated comorbidities, including cardiovascular diseases. Engaging in consistent exercise not only prevents the onset and progression of cardiovascular disease but also serves as an effective therapeutic strategy to enhance outcomes for patients already diagnosed with such conditions. The American College of Cardiology and the American Heart Association recommend that adults engage in at least 150 minutes per week of moderate-intensity physical activity or 75 minutes per week of vigorous-intensity physical activity to achieve and maintain weight loss and improve

cardiovascular health [17]. Moreover, studies have demonstrated that regular physical exercise can lower blood pressure, improve lipid profiles, and enhance insulin sensitivity, thereby reducing the risk of developing type 2 diabetes and other metabolic disorders. For instance, a systematic review published in the British Journal of Sports Medicine found that higher levels of cardiorespiratory fitness are associated with a lower risk of all-cause mortality, regardless of body weight [18]. Incorporating physical activity into daily routines, such as walking, cycling, or resistance training, can significantly contribute to weight management and overall health. Health organizations emphasize the importance of combining cardiovascular exercises with resistance training to improve heart and lung health, reduce the risk of chronic diseases, and enhance longevity.

Comprehensive lifestyle interventions that integrate diet, exercise, and behavioral modifications have demonstrated significant improvements in metabolic parameters among individuals with metabolic syndrome (MetS). A systematic review and metaanalysis published in Reviews in Endocrine and Metabolic Disorders evaluated the efficacy of educationbased lifestyle intervention programs incorporating unsupervised exercise. The study found that such interventions led to reductions in waist circumference and improvements in quality of life among adults with MetS. Specifically, the meta-analysis Casey L. Peiris et al. (2021) revealed that lifestyle intervention programs with unsupervised exercise reduced waist circumference by an average of 2.82 cm and improved physical activity levels when compared to usual care. Additionally, there was evidence suggesting enhancements in quality of life metrics, indicating the holistic benefits of these interventions [19].

Despite the documented benefits, several challenges persist in implementing lifestyle interventions such as maintaining long-term adherence to lifestyle changes remains a significant hurdle. Factors influencing adherence include individual motivation, socioeconomic status, and cultural influences.

Emerging trends in lifestyle interventions for MetS and obesity focus on enhancing effectiveness and feasibility through alternative approaches such as integration of technology, including mobile applications and wearable devices, is being explored to support behavior change and monitor progress. A study in Diagnostics examined the utility of digital health-based lifestyle interventions using healthcare devices for the prevention and management of MetS. The findings suggest that these tools can effectively aid in self-care by promoting lifestyle changes and sustained health improvements [20].

# **AIM**

The aim of this review article is to provide a comprehensive analysis of the impact of lifestyle interventions – dietary modifications, physical activity, and behavioral strategies – on the management of metabolic syndrome and obesity in adults.

# **MATERIALS AND METHODS**

A systematic review and literature analysis were conducted using leading scientific databases, including PubMed, Scopus, and Google Scholar, to provide a deeper understanding of the current state of research on metabolic syndrome (MetS) and obesity in adults and to identify the most evidence-based scientific data. Preference was given to systematic reviews, clinical trials, and analytical articles published in English in peer-reviewed journals. Inclusion criteria encompassed studies investigating the causes or consequences of MetS and obesity, scientific works addressing medical, metabolic, and socioeconomic factors and outcomes, research involving adult populations (aged 18 years and older), and publications from peer-reviewed sources. Studies were excluded if they focused solely on pediatric populations, did not address MetS or obesity, or were published in non-peer-reviewed outlets. The search was performed using the following keywords and their combinations: «metabolic syndrome,» «obesity,» «lifestyle interventions,» «Mediterranean diet,» «time-restricted eating,» «physical activity and metabolic health,» «insulin resistance,» «visceral obesity,» «cardiovascular disease risk,» and «economic burden of obesity.» Data were systematically collected, evaluated, and synthesized to assess the prevalence, pathophysiological mechanisms, health impacts, economic consequences, and efficacy of lifestyle interventions (dietary modifications, physical activity, and behavioral strategies) in managing MetS and obesity, ensuring a comprehensive analysis supported by high-quality evidence.

# **REVIEW AND DISCUSSION**

Metabolic syndrome and obesity are closely intertwined, sharing several pathophysiological mechanisms that contribute to their mutual development and associated health risks. Obesity, particularly visceral adiposity, plays a pivotal role in the development of insulin resistance – a key feature of MetS. Excess adipose tissue increases the release of free fatty acids and pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF- $\alpha$ ) and interleukin-6 (IL-6), which impair insulin signaling pathways. This impairment

disrupts glucose homeostasis, leading to hyperglycemia and significantly increasing the risk of type 2 diabetes. Studies Herbert Tilg & Alexander R. Moschen (2008) and Federica Zatterale et al. (2020) have highlighted these mechanisms and their central role in MetS pathophysiology [21,22]. Adipose tissue in obese individuals often exhibits a state of chronic, low-grade inflammation. This is characterized by increased secretion of pro-inflammatory cytokines like TNF-α and IL-6, as well as activation of macrophages within the adipose tissue [23]. These inflammatory mediators exacerbate insulin resistance, promote endothelial dysfunction, and contribute to atherosclerotic plaque formation, thereby increasing the risk of cardiovascular complications associated with MetS [24]. Obesity is closely linked to dyslipidemia, characterized by elevated triglycerides, increased levels of small dense LDL particles, and reduced HDL cholesterol. These lipid abnormalities are hallmark components of MetS and significantly heighten the risk of cardiovascular diseases. Additionally, obesity-related mechanisms, including insulin resistance and inflammation, contribute to the development of hypertension. This is mediated through pathways such as increased sympathetic nervous system activity, activation of the renin – angiotensin – aldosterone system (RAAS), and altered vascular function. Collectively, dyslipidemia and hypertension amplify cardiovascular risk in individuals with obesity and MetS [25,26].

Mediterranean diet (MD), emphasizing fruits, vegetables, whole grains, and healthy fats, has been extensively studied for its beneficial effects on metabolic health. A systematic review and meta-analysis Papadaki, A. et al. (2020) examined the MD's impact on MetS incidence and components. The study concluded that adherence to the MD significantly reduced the risk of developing MetS and improved related risk factors, including waist circumference and lipid profiles [27]. Further supporting these findings, a systematic review Katherine Esposito et al. (2013) in analyzed data from various studies and confirmed that the MD is associated with a lower prevalence of MetS. The review highlighted that the MD's emphasis on monounsaturated fats, fiber, and antioxidants contributes to its protective effects against MetS components [28].

Time-restricted eating (TRE), a form of intermittent fasting, has shown promising benefits in weight loss and metabolic health, making it a compelling intervention for managing metabolic syndrome and obesity. TRE involves limiting food intake to a specific time window, often 8-10 hours, while fasting for the remainder of the day [29]. This approach aligns eating patterns with the body's circadian rhythms, optimizing metabolic processes. Mechanisms of action include improved in-

sulin sensitivity, reduced abdominal fat, and enhanced circadian rhythm regulation. TRE promotes extended fasting periods that lower insulin levels, encouraging fat utilization for energy. This is particularly effective in reducing visceral fat, which is strongly associated with MetS and cardiovascular diseases. Additionally, TRE helps stabilize glucose levels and improves insulin signaling, addressing key aspects of metabolic dysfunction. Kelsey Gabel et al. (2018) evaluated the effects of an 8-hour time-restricted feeding (TRF) regimen (eating only between 10:00 AM and 6:00 PM) over 12 weeks in 23 obese adults [30]. Compared to a historical control group, the TRF group experienced modest weight loss (-2.6% body weight), reduced calorie intake (-341 kcal/ day), and decreased systolic blood pressure (-7 mm Hg). The findings suggest that TRF may aid weight loss and improve blood pressure without the need for calorie counting.

Humaira Jamshed et al. (2022) randomized clinical trial compared early time-restricted eating (eTRE; an 8-hour eating window from 7:00 AM to 3:00 PM) to eating over a period of 12 or more hours (control) for weight loss and fat loss in 90 adults with obesity. At 14 weeks, eTRE led to greater weight loss (-6.3 kg vs. -4.0 kg) but did not significantly enhance fat loss overall, though secondary analysis showed benefits in completers. eTRE also reduced diastolic blood pressure and improved mood (reduced fatigue and depression, increased vigor). No significant differences were observed in most fasting cardiometabolic markers. The study highlights eTRE's potential for weight loss and hypertension management, suggesting larger trials are needed to evaluate effects on fat loss and metabolic health [31]. In addition to weight loss and metabolic benefits, TRE has been associated with improved cardiovascular health, including lower blood pressure and triglyceride levels, as well as reduced inflammation markers such as CRP and IL-6. TRE also supports gut health by promoting microbial diversity and enhancing digestion during active hours, while better alignment with circadian rhythms improves sleep quality. TRE is a flexible and sustainable intervention, popular schedules, such as 16:8, 14:10, and 12:12, can be tailored to individual preferences, making it accessible to a broad population.

Engaging in regular physical activity, encompassing both aerobic and resistance exercises, plays a crucial role in enhancing insulin sensitivity and facilitating weight management. Aerobic exercises, such as cycling, have been shown to significantly improve metabolic health. For instance, a study conducted by the University of Aberdeen found that sedentary middle-aged men who participated in regular cycling for one hour a day, five days a week, experienced notable improvements

in metabolic health and an average weight loss of 2.6 kg over eight weeks. Research by Stephen R. Baird and John A. Hawley (2017) confirms that physical activity (PA) and exercise improve insulin sensitivity (IS) and glycaemic control in a variety of populations, including healthy individuals, people with metabolic syndrome (MS), prediabetes or type 2 diabetes (T2D). Moderate aerobic exercise (≥30 minutes, 3-5 days per week) and high-intensity interval training (HIIT) are both effective, with HIIT potentially offering similar or greater benefits with less time commitment. Resistance training (REX) also improves SI, especially when combined with aerobic exercise. The benefits of exercise on SI often occur independently of weight loss and are associated with molecular changes, such as increased GLUT4 and improved skeletal muscle capillarity [32]. This systematic review and meta-analysis Anna K. Jansson et al. (2022) examined the effects of resistance training (RT) on glycosylated hemoglobin (HbA1c) in adults with type 2 diabetes mellitus (T2DM) across 20 randomized controlled trials (n=1172) [33]. RT significantly reduced HbA1c levels compared to control groups (weighted mean difference = -0.39%, p<0.001), demonstrating its effectiveness in glycemic control. Improvements in muscular strength were associated with greater reductions in HbA1c, highlighting the importance of strength gains in RT programs. No significant differences were found between RT and aerobic training in reducing HbA1c, suggesting both are effective. Intervention duration (8-52 weeks) did not significantly influence HbA1c reduction, indicating similar benefits from shorter and longer programs. Supervised RT programs had better adherence and outcomes, but variability in RT protocols (frequency, intensity, type of exercises) underscores the need for standardized approaches. In conclusion, RT is an effective strategy to reduce HbA1c in T2DM, particularly when it results in strength improvements. Fiona C Bull et al. (2020) in their article 'World Health Organisation 2020 guidelines on physical activity and sedentary behaviour' emphasise the importance of regular aerobic physical activity and physical activity aimed at strengthening muscles, as well as reducing sedentary behaviour. All physical activity is beneficial, and this applies to people of all ages and abilities. Their recommendation is that all adults should do 150-300 minutes of moderate-intensity physical activity or 75-150 minutes of vigorous-intensity physical activity, or an equivalent combination of moderate- and vigorous-intensity aerobic physical activity per week [34].

Maintaining the benefits of lifestyle interventions for metabolic syndrome (MetS) and obesity necessitates ongoing effort and strategic approaches, regular follow-ups and support systems are crucial for sustaining lifestyle changes. Group-based programs have been shown to be effective in providing social support and accountability, which are essential for long-term adherence. The article by Muhammad Daniel Azlan Mahadzir et al. (2021) focused on group interventions aimed at lifestyle change as a strategy for the prevention and management of metabolic syndrome [35]. The study performed a scoping review of existing interventions to assess their effectiveness and provide a strategic framework for future research in this area. It analyses three main intervention designs: randomised controlled trials, pre- and post-test interventions, and quasi-experiments. The interventions were predominantly multicomponent, focused on nutrition, physical activity and behaviour change, and involved multidisciplinary teams of health professionals and peer educators. Most significant improvements were seen in waist circumference, followed by blood pressure. Research highlights the role of social support and group interaction in increasing motivation, sharing experiences and achieving sustainable lifestyle changes. It concludes that group interventions can be a practical and cost-effective approach to reducing MetS-related risks and calls for more systematic evaluations to better understand the long-term impact of such programmes.

This article Maria Letizia Petroni et al. (2023) explores the long-term impact of lifestyle interventions on diabetes incidence among individuals with non-alcoholic fatty liver disease (NAFLD) [36]. It compares two approaches: a traditional group-based intervention (GBI) and a web-based intervention (WBI). Both methods aimed to promote weight loss and healthier lifestyles, focusing on their effectiveness in preventing diabetes over a five-year period.NAFLD, a prevalent condition linked to obesity and type 2 diabetes, often progresses to severe liver diseases and associated comorbidities. Given the challenges of maintaining adherence to traditional in-person programs, the study investigates whether WBI could serve as a viable alternative to GBI, providing more flexibility while maintaining comparable outcomes. The research followed 546 individuals with NAFLD, excluding those with diabetes at enrollment, and tracked their progress through regular clinical assessments. The results showed that both interventions achieved similar reductions in average body weight and improvements in lifestyle behaviors. The incidence of diabetes during the follow-up was influenced primarily by baseline prediabetes and the degree of weight loss, rather than the type of intervention. Weight loss emerged as a key factor in reducing diabetes risk, demonstrating the effectiveness of lifestyle modification regardless of the delivery method. The study highlights the potential of web-based interventions to expand access to behavioral treatment for NAFLD and reduce healthcare costs. While both GBI and WBI showed promise, differences in participant demographics, attrition rates, and follow-up duration were noted, suggesting that these approaches may cater to distinct populations. The findings emphasize the importance of weight management and tailored strategies to improve long-term health outcomes in individuals.

Integrating healthy habits into daily life enhances well-being and increases the likelihood of sustaining these behaviors long-term. Establishing achievable objectives is crucial for maintaining motivation and ensuring progress. Utilizing the SMART criteria – Specific, Measurable, Achievable, Relevant, and Time-bound – can aid in formulating effective goals. For instance, instead of aiming to "exercise more," commit to "walking for 30 minutes, three times a week".

Self-monitoring is a cornerstone strategy for managing obesity and achieving sustainable weight loss. By tracking dietary intake, physical activity, and weight, patients can gain insights into their behaviors and make informed adjustments. Regular self-monitoring not only enhances accountability but also helps identify patterns that contribute to unhealthy habits, making it a valuable tool in obesity management. Keeping a food diary is one of the most effective ways to monitor caloric intake and food choices. Patients can log meals, portion sizes, and emotional triggers that influence eating behaviors. Studies show that consistent journaling is associated with greater weight loss outcomes. Mobile apps, such as MyFitnessPal or LoseIt, provide user-friendly platforms for tracking food intake, activity levels, and weight. Many apps offer features like barcode scanning, nutrient breakdowns, and personalized goals, making them practical tools for daily use. A study Michele L. Patel et al. (2019) demonstrated that individuals using a mobile app for self-monitoring lost significantly more weight compared to those using traditional methods [37].

The intertwined epidemics of metabolic syndrome and obesity continue to challenge global health systems, revealing a complex interplay of biology, behavior, and environment that defies simple solutions [38]. While lifestyle interventions have emerged as a cornerstone of management, their broader implications invite a deeper exploration of how these conditions reflect – and are shaped by – evolving societal dynamics [39]. This discussion ventures beyond established evidence to consider untapped opportunities, emerging paradigms, and the transformative potential of integrating interdisciplinary approaches to address these pervasive health threats. One intriguing dimension is the role of the gut-brain axis in modulating the

progression of MetS and obesity. Recent advances in neuroscience suggest that the bidirectional communication between the gastrointestinal tract and the central nervous system influences not only appetite regulation but also systemic inflammation and stress responses – key contributors to metabolic dysfunction [40]. Fermented foods, rich in probiotics, and prebiotic fibers are gaining attention for their potential to recalibrate gut microbiota, reducing the inflammatory cascade that exacerbates visceral fat accumulation [41,42]. Unlike traditional dietary interventions, which focus on macronutrient balance, this approach targets microbial ecology as a leverage point, offering a novel avenue for intervention that could complement existing strategies. The psychological benefits – such as reduced stress and improved mood - may further enhance adherence, addressing a critical gap in long-term behavior change. Another underexplored frontier is the impact of sleep architecture on metabolic health [43]. Emerging research indicates that disrupted circadian rhythms, driven by irregular sleep patterns or excessive exposure to artificial light, amplify insulin resistance and fat storage, independent of diet or activity levels. In a world increasingly dominated by 24/7 connectivity and shift work, restoring sleep hygiene could emerge as a low-cost, high-impact intervention [44,45]. Techniques such as chronotherapy - aligning eating and activity with natural light cycles - might amplify the benefits of dietary and exercise regimens, creating a holistic framework that synchronizes metabolic processes with environmental cues [46]. This perspective shifts the focus from isolated behaviors to the orchestration of daily rhythms, potentially redefining how we approach prevention and management. The advent of wearable technology and ambient intelligence offers a radical rethinking of how lifestyle interventions are delivered and monitored [47].

Beyond tracking steps or calories, next-generation devices could measure real-time biomarkers - such as glucose fluctuations, cortisol levels, or even inflammatory markers - providing immediate feedback to users and clinicians. Imagine a smart home system that adjusts lighting to optimize sleep, prompts movement during sedentary periods, or suggests meals based on metabolic needs detected through skin sensors. Such innovations could transform passive interventions into dynamic, adaptive systems, empowering individuals to respond proactively to their body's signals. However, this technological leap raises ethical questions about data privacy and the risk of over-reliance on automation, potentially undermining intrinsic motivation. Social connectivity, often overlooked in metabolic health discussions, may hold untapped potential for amplifying intervention success. The rise of virtual communities – fueled by social media and gaming platforms - offers a new paradigm for fostering accountability and motivation. Gamified health challenges, where participants compete or collaborate to meet fitness or dietary goals, could harness the power of peer influence in ways that traditional group programs cannot. This approach aligns with the growing trend of «social prescribing,» where healthcare providers connect patients to community resources to combat isolation, a known risk factor for obesity-related behaviors. By reframing health as a collective endeavor rather than an individual burden, such strategies could reshape cultural attitudes toward lifestyle change, particularly in younger demographics increasingly detached from conventional healthcare systems.

The environmental context of MetS and obesity also warrants a bold reimagination. Climate change, with its cascading effects on food security and physical activity patterns, introduces a new layer of complexity. Rising temperatures and extreme weather may discourage outdoor exercise, while disruptions to agricultural systems could limit access to nutrient-dense foods, pushing reliance on shelf-stable, processed alternatives. Conversely, the push for sustainability – through plant-based diets or reduced meat consumption – aligns serendipitously with metabolic health goals, offering a dual benefit for individuals and the planet. Public health campaigns could capitalize on this synergy,

framing lifestyle interventions as both a personal and ecological imperative, potentially galvanizing broader societal support.

#### CONCLUSIONS

Lifestyle interventions play a pivotal role in managing metabolic syndrome and obesity, addressing the root causes of these conditions and reducing the risk of related complications, including cardiovascular disease and type 2 diabetes. Dietary changes, such as the Mediterranean diet, combined with regular physical activity and behavioral support, have consistently shown significant improvements in metabolic health and weight management. However, adherence remains a major challenge, influenced by socioeconomic factors, cultural norms, and individual motivation. Emerging strategies, such as the use of digital tools, personalized approaches, and community-based programs, show promise in overcoming these barriers and enhancing the effectiveness of lifestyle modifications. To reduce the global burden of MetS and obesity, future efforts must prioritize the development of sustainable, scalable, and inclusive interventions that integrate into daily life and address health disparities. Through collaboration between healthcare providers, researchers, and policymakers, it is possible to create effective solutions for these pressing health challenges.

#### **REFERENCES**

- 1. Chowdhury K, Sinha S, Ahmad R et al. Type 2 Diabetes Mellitus and Cardiometabolic Prospects: A Rapid Narrative Review. Cureus. 2024;16(7):e65808. doi: 10.7759/cureus.65808.
- 2. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11(8):215-225. doi: 10.1177/1753944717711379.
- 3. Budreviciute A, Damiati S, Sabir DK et al. Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors. Front Public Health. 2020;8:574111. doi: 10.3389/fpubh.2020.574111.
- 4. Schwartz MW, Seeley RJ, Zeltser LM et al. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr Rev. 2017;38(4):267-296. doi: 10.1210/er.2017-00111.
- 5. Saklayen MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018;20(2):12. doi: 10.1007/s11906-018-0812-z.
- 6. Saklayen MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018;20(2):12. doi: 10.1007/s11906-018-0812-z.
- 7. Nuttall FQ. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr Today. 2015;50(3):117-128. doi: 10.1097/NT.000000000000092.
- 8. Cawley J, Biener A, Meyerhoefer C et al. Direct medical costs of obesity in the United States and the most populous states. J Manag Care Spec Pharm. 2021;27(3):354-366. doi: 10.18553/jmcp.2021.20410.
- 9. Scholze J, Alegria E, Ferri C et al. Epidemiological and economic burden of metabolic syndrome and its consequences in patients with hypertension in Germany, Spain and Italy; a prevalence-based model. BMC Public Health. 2010;10:529. doi: 10.1186/1471-2458-10-529.
- 10. Pi-Sunyer X. The medical risks of obesity. Postgrad Med. 2009;121(6):21-33. doi: 10.3810/pgm.2009.11.2074.
- 11. Fruh SM. Obesity: Risk factors, complications, and strategies for sustainable long-term weight management. J Am Assoc Nurse Pract. 2017;29(S1):S3-S14. doi: 10.1002/2327-6924.12510.

- 12. Jayedi A, Soltani S, Zargar MS et al. Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ. 2020;370:m3324. doi: 10.1136/bmj.m3324.
- 13. Chong KS, Chang YH, Yang CT et al. Longitudinal economic burden of incident complications among metabolic syndrome populations. Cardiovasc Diabetol. 2024;23(1):246. doi: 10.1186/s12933-024-02335-7.
- 14. Estruch R, Ros E, Salas-Salvadó J et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34. doi: 10.1056/NEJMoa1800389.
- 15. Muscogiuri G, Verde L, Sulu C et al. Mediterranean Diet and Obesity-related Disorders: What is the Evidence? Curr Obes Rep. 2022;11(4):287-304. doi: 10.1007/s13679-022-00481-1.
- 16. Martín-Peláez S, Fito M, Castaner O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients. 2020;12(8):2236. doi: 10.3390/nu12082236.
- 17. Arnett DK, Blumenthal RS, Albert MA et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e563-e595. doi: 10.1161/CIR.00000000000000077.
- 18. Weeldreyer NR, De Guzman JC, Paterson C et al. Cardiorespiratory fitness, body mass index and mortality: a systematic review and meta-analysis. Br J Sports Med. 2025;59(5):339-346. doi: 10.1136/bjsports-2024-108748.
- 19. Peiris CL, van Namen M, O'Donoghue G. Education-based, lifestyle intervention programs with unsupervised exercise improve outcomes in adults with metabolic syndrome. A systematic review and meta-analysis. Rev Endocr Metab Disord. 2021;22(4):877-890. doi: 10.1007/s11154-021-09644-2. DOI 20
- 20. Lee JH, Lee KH, Kim HJ et al. Effective Prevention and Management Tools for Metabolic Syndrome Based on Digital Health-Based Lifestyle Interventions Using Healthcare Devices. Diagnostics (Basel). 2022;12(7):1730. doi: 10.3390/diagnostics12071730.
- 21. Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med. 2008;14(3-4):222-31. doi: 10.2119/2007-00119.Tilg.
- 22. Zatterale F, Longo M, Naderi J et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol. 2020;10:1607. doi: 10.3389/fphys.2019.01607.
- 23. Kim JA, Choi KM. Newly Discovered Adipokines: Pathophysiological Link Between Obesity and Cardiometabolic Disorders. Front Physiol. 2020;11:568800. doi: 10.3389/fphys.2020.568800.
- 24. McArdle MA, Finucane OM, Connaughton RM et al. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol (Lausanne). 2013;4:52. doi: 10.3389/fendo.2013.00052.
- 25. Shariq OA, McKenzie TJ. Obesity-related hypertension: a review of pathophysiology, management, and the role of metabolic surgery. Gland Surg. 2020;9(1):80-93. doi: 10.21037/gs.2019.12.03.
- 26. Islam MS, Wei P, Suzauddula M et al. The interplay of factors in metabolic syndrome: understanding its roots and complexity. Mol Med. 2024;30(1):279. doi: 10.1186/s10020-024-01019-y.
- 27. Papadaki A, Nolen-Doerr E, Mantzoros CS. The Effect of the Mediterranean Diet on Metabolic Health: A Systematic Review and Meta-Analysis of Controlled Trials in Adults. Nutrients. 2020;12(11):3342. doi: 10.3390/nu12113342.
- 28. Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D. Mediterranean diet and metabolic syndrome: an updated systematic review. Rev Endocr Metab Disord. 2013;14(3):255-63. doi: 10.1007/s11154-013-9253-9.
- 29. Kim J, Song Y. Early Time-Restricted Eating Reduces Weight and Improves Glycemic Response in Young Adults: A Pre-Post Single-Arm Intervention Study. Obes Facts. 2023;16(1):69-81. doi: 10.1159/000527838.
- 30. Gabel K, Hoddy KK, Haggerty N et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging. 2018;4(4):345-353. doi: 10.3233/NHA-170036.
- 31. Jamshed H, Steger FL, Bryan DR et al. Effectiveness of Early Time-Restricted Eating for Weight Loss, Fat Loss, and Cardiometabolic Health in Adults With Obesity: A Randomized Clinical Trial. JAMA Intern Med. 2022;182(9):953-962. doi: 10.1001/jamainternmed.2022.3050.
- 32. Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2017;2(1):e000143. doi: 10.1136/bmjsem-2016-000143.
- 33. Jansson AK, Chan LX, Lubans DR et al. Effect of resistance training on HbA1c in adults with type 2 diabetes mellitus and the moderating effect of changes in muscular strength: a systematic review and meta-analysis. BMJ Open Diabetes Res Care. 2022;10(2):e002595. doi: 10.1136/bmjdrc-2021-002595.
- 34. Bull FC, Al-Ansari SS, Biddle S et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451-1462. doi: 10.1136/bjsports-2020-102955.
- 35. Mahadzir MDA, Quek KF, Ramadas A. Group-Based Lifestyle Intervention Strategies for Metabolic Syndrome: A Scoping Review and Strategic Framework for Future Research. Medicina (Kaunas). 2021;57(11):1169. doi: 10.3390/medicina57111169.
- 36. Petroni ML, Brodosi L, Armandi A et al. Lifestyle Intervention in NAFLD: Long-Term Diabetes Incidence in Subjects Treated by Web- and Group-Based Programs. Nutrients. 2023;15(3):792. doi: 10.3390/nu15030792.

- 37. Patel ML, Hopkins CM, Brooks TL, Bennett GG. Comparing Self-Monitoring Strategies for Weight Loss in a Smartphone App: Randomized Controlled Trial. JMIR Mhealth Uhealth. 2019;7(2):e12209. doi: 10.2196/12209.
- 38. Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L et al. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int J Mol Sci. 2023;24(13):10672. doi: 10.3390/ijms241310672.
- 39. Kirkbride JB, Anglin DM, Colman I et al. The social determinants of mental health and disorder: evidence, prevention and recommendations. World Psychiatry. 2024;23(1):58-90. doi: 10.1002/wps.21160.
- 40. Prodan A, Dzhyvak V. Bariatric surgery impact upon oxidative stress markers. East Ukr Med J. 2023;11(4):453-60. doi:10.21272/eumj.2023;11(4):453-460.
- 41. Leeuwendaal NK, Stanton C, O'Toole PW, Beresford TP. Fermented Foods, Health and the Gut Microbiome. Nutrients. 2022;14(7):1527. doi: 10.3390/nu14071527.
- 42. Valentino V, Magliulo R, Farsi D et al. Fermented foods, their microbiome and its potential in boosting human health. Microb Biotechnol. 2024;17(2):e14428. doi: 10.1111/1751-7915.14428.
- 43. Dejenie TA, G/Medhin MT, Admasu FT et al. Impact of objectively-measured sleep duration on cardiometabolic health: A systematic review of recent evidence. Front Endocrinol (Lausanne). 2022;13:1064969. doi: 10.3389/fendo.2022.1064969.
- 44. Meléndez-Fernández OH, Liu JA, Nelson RJ. Circadian Rhythms Disrupted by Light at Night and Mistimed Food Intake Alter Hormonal Rhythms and Metabolism. Int J Mol Sci. 2023;24(4):3392. doi: 10.3390/ijms24043392.
- 45. Duez H, Staels B. Circadian Disruption and the Risk of Developing Obesity. Curr Obes Rep. 2025;14(1):20. doi: 10.1007/s13679-025-00610-6.
- 46. Franzago M, Alessandrelli E, Notarangelo S et al. Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. Int J Mol Sci. 2023;24(3):2571. doi: 10.3390/ijms24032571.
- 47. Dzhyvak VH, Klishch IM, Khlibovska OI, Levenets SS. Potentials and impact of platelet-rich plasma (PRP) on the regenerative properties of muscle tissue. Biopolymers Cell. 2024;40(1):3-13. doi:10.7124/bc.000AA9.

#### **CONFLICT OF INTEREST**

The Authors declare no conflict of interest

# CORRESPONDING AUTHOR Volodymyr H. Dzhyvak

Ivan Horbachevsky Ternopil National Medical University 1 Voli Square, 46001 Ternopil, Ukraine e-mail: diyvak@tdmu.edu.ua

# **ORCID AND CONTRIBUTIONSHIP**

Iryna M. Nikitina: 0000- 0001-6595-2502 E F

Volodymyr H. Dzhyvak: 0000-0002-4885-7586 A D E

A — Work concept and design, B — Data collection and analysis, C — Responsibility for statistical analysis, D — Writing the article, E — Critical review, F — Final approval of the article

**RECEIVED:** 16.05.2025 **ACCEPTED:** 29.08.2025

