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INTRODUCTION
Diabetic retinopathy (DR) remains one of the leading 
causes of vision loss in the workingage population, and 
its burden is rising in parallel with the global epidemic 
of type 2 diabetes mellitus (T2DM) [1]. According to the 
11th edition of the International Diabetes Federation 
(IDF) Atlas, 588.7 million adults (20–79 years; prevalence 
11.1%) were living with diabetes in 2024, with numbers 
projected to reach 852.5 million (13.0%) by 2050 – trends 
that will inevitably amplify the incidence of DR [1]. In the 
global landscape of vision loss, DR consistently ranks 
among the principal causes of blindness and modera-
tetosevere visual impairment in individuals aged ≥50 
years, as documented by the GBD/VLEG consortium 
analysis of 1990-2020 data [2]. In clinical practice, disease 
severity is graded using the International Clinical Diabetic 
Retinopathy (ICDR, 2003) scale, which distinguishes DR0, 
mild/moderate/severe nonproliferative DR (NPDR), and 
proliferative DR (PDR), whereas diabetic macular edema 

(DME) is evaluated separately [3]. However, this discrete, 
structurebased grading does not fully capture early 
ischemic and neuroinflammatory processes that precede 
overt microvascular signs [4, 5].

Optical coherence tomography angiography (OCTA) 
has enabled the visualization of retinal perfusion defects 
– particularly within the deep capillary plexus (DCP) – 
that are associated with downstream complications as 
early as moderate NPDR and even in individuals with 
T2DM without clinically apparent DR [4, 5]. This mis-
match between the continuous pathophysiology of DR 
progression and categorical clinical grading underscores 
the need for local biomarkers capable of biochemically 
profiling the retinal microenvironment and comple-
menting imaging data to refine risk stratification for the 
development and progression of DR.

Chronic lowgrade inflammation is recognized as a 
principal driver of DR pathogenesis: hyperglycemia ac-
tivates proinflammatory cells, augments oxidative stress, 
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and impairs endothelial function, thereby triggering a 
cascade of mediators that damage the retinal neurovas-
cular unit [6, 7]. A central role in this cascade is played 
by the NLRP3 inflammasome (NODlike receptor family, 
pyrin domaincontaining 3): its activation induces secre-
tion of IL1β/IL18 and pyroptotic cell death, amplifying 
inflammation and microvascular dysfunction [8]. Against 
this background, interleukins – as universal regulators 
of innate and adaptive immunity – form inflammatory 
“signatures” that can be locally monitored in DR, given 
their amenability to qualitative and quantitative assess-
ment in ocular tissues.

IL1β is a classical proinflammatory mediator that in-
jures the retinal capillary endothelium via NFκB (nuclear 
factor kappa-light-chain-enhancer of activated B cells) 
activation, increased oxidative stress, and mitochondrial 
damage [9]; elevated levels have been reported in ex-
perimental models and in intraocular fluids of patients 
with PDR [10]. IL4, a key cytokine of the Thelper type 2 
(Th2) response, antagonizes several proinflammatory 
pathways [11] and is considered a potential immuno-
modulatory therapeutic target beyond ophthalmology, 
although its role in DR remains contextdependent. IL6 is 
a pleiotropic cytokine with both pro and antiinflamma-
tory actions, serving as a marker of neuroinflammation 
and endothelial dysfunction [12]. In DR, higher aque-
ous humor (AH) levels of IL6 are associated with the 
presence/severity of DME and overall disease activity 
and, in some reports, with poorer functional outcomes 
of therapy [12-14]. Finally, IL8 (CXC motif chemokine 
ligand 8, CXCL8) is a potent chemoattractant with pro-
angiogenic activity; its concentrations are elevated in 
serum, AH, and vitreous in PDR/DME and correlate with 
retinal edema and vascular remodeling [15, 16]. Taken 
together, these data support the concept of a cytokine 
imprint of the ocular microenvironment that reflects 
the activity of proinflammatory and proangiogenic 
processes across DR phenotypes.

Local intraocular biofluids are indispensable matrices 
for quantifying these markers. Among them, the AH is the 
most readily accessible medium proximal to the posterior 
segment; its composition reflects tissue and celllevel 
processes within the retina and choroid [17]. Multiom-
ics investigations of AH in DR/DME have demonstrated 
shifts in metabolic profiles and immunoinflammatory 
pathways, including elevations in multiple cytokines and 
extracellularmatrix remodeling factors [18]. Proteomic 
studies have identified dozens of candidate proteins 
that correlate with DR severity and its complications 
[19, 20]. The concept of an ocular “liquid biopsy” has 
been convincingly validated in retinoblastoma, where 
AH outperformed blood with respect to tumorderived 
DNA and protein biomarkers [21]. 

In view of the above, we selected interleukins as local 
biochemical indicators of DR progression. Published ev-
idence indicates that IL6 and IL8 in AH most consistently 
associate with the presence of DR/DME; however, robust 
stagespecific thresholds have not yet been established 
[16, 22]. Against this background, AH may be considered 
a local molecular mirror of hypoxicinflammatory process-
es in the posterior segment – particularly the retina – in 
DR, complementing OCTAderived perfusion metrics in 
the DCP and other retinal layers to enable integrated risk 
stratification [4, 5].

AIM
Objective – to determine the concentrations of interleu-
kins (IL1β, IL4, IL6, IL8) in the aqueous humor (AH) and 
their association with diabetic retinopathy (DR) severity.

MATERIALS AND METHODS 
All procedures conformed to the Council of Europe 
Convention on Human Rights and Biomedicine and to 
the principles of the Declaration of Helsinki (1964, with 
subsequent amendments including the 2000 revision) 
and complied with Ukrainian legislation. The study 
protocol was approved by the Bioethics and Academic 
Integrity Committee of Bogomolets National Medical 
University (Protocol No. 196, 23 June 2025). The study 
was a singlecenter, crosssectional analysis with pro-
spective biospecimen collection.

We enrolled 110 patients with T2DM and DR; anal-
yses were based on the worstaffected eye (110 eyes). 
According to the ICDR severity scale [3], participants 
were allocated to five groups: (1) no retinopathy (DR0), 
n=15; (2) mild NPDR, n=40; (3) moderate NPDR, n=25; 
(4) severe NPDR, n=12; and (5) PDR, n=18. 

Participants were 50-76 years old (median 62.5 [51.3-
69] years); men: 92 (83.6%), women: 18 (16.4%), with 
no betweengroup sex differences (p=0.970). DME was 
present in 12/110 (10.9%) patients, of whom 10 (83.3%) 
belonged to groups 4 and 5. A control cohort of 25 age 
and sexcomparable individuals without diabetes or 
DR, undergoing surgery for agerelated cataract, was 
also included.

All participants underwent standardized ophthalmic 
evaluation, including distance visual acuity testing with 
a premium test chart projector (C.S.O. srl., USA) using 
Optiek XL trial lenses (USA) and a Takagi VT5 phoropter 
(Takagi Seiko Co., Ltd., Japan); autorefraction (TOPCON 
KR7000P; TOPCON Corporation, Japan); noncontact 
tonometry (Huvitz HNT7000) and keratopachymetry 
(HNT1P; Huvitz, Korea); slitlamp biomicroscopy (CSO 
SL9900 with LED 5× video system; Italy) and binocular 
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indirect ophthalmoscopy (Heine OMEGA 600 Traveler 
Set; HEINE, Germany); gonioscopy using a contact 
threemirror Optiek XL lens (USA); ophthalmoscopy 
with Volk Digital Wide Field lenses (Germany) and a 
Goldmann threemirror lens; and optical coherence 
tomography with fundus camera and angiography 
(HOCT1F, Huvitz Co. Ltd., Korea).

At the start of phacoemulsification, 0.1 mL of AH was 
obtained via anteriorchamber paracentesis. Concentra-
tions of IL1β, IL4, IL6, and IL8 (pg/mL) were measured 
by solidphase ELISA using Invitrogen (Thermo Fisher 
Scientific, USA) kits. 

Statistical analyses were performed in EZR v.1.54 
(graphical interface to R v.4.0.3; R Foundation for Sta-
tistical Computing, Austria) [23]. Because data deviated 
from normality, results are reported as medians (Me) 
with interquartile ranges (Q1-Q3). Group comparisons 
used the Kruskal-Wallis test with Dunn’s post hoc pro-
cedure; α=0.05 [24]. Diagnostic cutoffs for interleukin 
concentrations were derived using multiclass classifica-
tion (onevsall approach) with ROCbased performance 
assessment [25, 26].

ETHICS STATEMENT
This study involved human participants and was 
approved by the local bioethics committee. Written 
informed consent was obtained from all participants. 
The research was conducted in accordance with the 

Declaration of Helsinki. No animal experiments were 
performed.

RESULTS
Analyses were performed across five clinical groups of 
patients with T2DM who either had no DR or exhibited DR 
at various stages (mild, moderate, severe NPDR, or PDR). 
Sex distribution was balanced across groups (women: 18 
(16.4%); men: 92 (83.6%); p=0.9703), minimizing sex as 
a potential confounder. Age was comparable between 
groups (global p=0.108), whereas diabetes duration in-
creased in a stepwise fashion with DR stage: DR0 – 5.0 (3.3-
7.5) years; NPDR1 – 10.0 (5.0-14.5); NPDR2 – 14.0 (10.0-18.5); 
NPDR3 – 16.5 (10.0-21.0); PDR – 15.5 (15.0-25.0); p<0.001.

At enrollment, indices of carbohydrate metabolism 
(fasting plasma glucose, HbA1c) did not differ signifi-
cantly across groups (p=0.176 and p=0.101, respec-
tively), whereas Cpeptide showed a downward trend 
in more severe phenotypes without reaching statistical 
significance (p=0.108). Thus, the clinical groups were 
comparable for age, sex, and glycemic control and dif-
fered primarily by diabetes duration – parameters that 
define the baseline context for subsequent analyses of 
AH interleukin levels.

Table 1 summarizes the concentrations of IL1β, IL4, 
IL6, and IL8 in AH by group. Global betweengroup 
differences were statistically significant for all markers 
(all p<0.001) and were corroborated by appropriate 

Table 1. Aqueous humor interleukin concentrations by study group (Me; Q1–Q3)

Analyte
Study group

p
Control 1st

(DR0)
2nd

(NPDR1)
3rd

(NPDR2)
4th

(NPDR3)
5th

(PDR)

IL-1b,
pg/mL

2,12abcde

(0,89–
2,49)

3,990de

(3,16–
5,21)

4,040de

(2,77–
5,68)

5,460e

(40,3–
6,32)

9,050ab

(7,59–
11,04)

21,860abc

(17,2–
28,33)

<0,001

IL-4,
pg/mL

9,22bcde

(6,89–
10,52)

5,24cde

(4,68–
7,47)

4,640ce

(3,75–
5,74)

2,670ab

(2,12–
3,96)

2,410a

(1,44–
3,56)

1,10ab

(0,64–
1,43)

<0,001

IL-6,
pg/mL

15,7±
7,7bcde

29,1±
11,8de

38,5±
13,70de

47,2±
14,70de

129,2±
78,70abce

314,3±
68,90abcd <0,001

IL-8,
pg/mL

34,8cde

(27,2–
41,6)

45,2cde

(27,8–
54,3)

57,4cde

(37,6–
74,9)

143,70ab

(113,1–
182,9)

350,10ab

(309,7–
369,8)

269,40ab

(226,6–
301,9)

<0,001

Notes: Betweengroup comparisons used ANOVA (for normally distributed data) or the Kruskal–Wallis test (for nonnormal data); posthoc testing em-
ployed Tukey-Kramer or Dunn’s tests, respectively:
0 –  statistically significant differences versus control group, p<0,05;
a –  statistically significant differences versus 1st group, p<0,05;
b –  statistically significant differences versus 2nd group, p<0,05;
c –  statistically significant differences versus 3rd group, p<0,05;
d –  statistically significant differences versus 4th group, p<0,05;
 e–  statistically significant differences versus 5th group, p<0,05.
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The visualization in Figure 1 revealed orderly yet 
distinct gradients: IL1β increased monotonically from 
control to PDR; IL4 declined with advancing severity; 
IL6 showed the largest dynamic range with a marked 
surge at NPDR3; and IL8 exhibited a “peaked” profile 
with a maximum at NPDR3 followed by a relative de-
crease in PDR. 

These visual trends informed a sixclass classification 
scheme (control, DR0, NPDR1, NPDR2, NPDR3, PDR), for 
which Table 2 provides cutoff intervals and classspecific 
metrics (sensitivity/specificity) together with overall 
model accuracy.

 IL1β cutoffs: <2.98 (control), 2.99-6.21 (DR0), 6.22-
7.87 (NPDR1), 7.88-8.35 (NPDR2), 8.36-13.68 (NPDR3), 
>13.68 pg/mL (PDR). Very high specificity was observed 
at the extremes (notably PDR), but overlap between 
adjacent NPDR classes yielded an overall accuracy of 
≈ 53% (95% CI: 44-62%). 

IL4 cutoffs shifted downward from higher values in 
controls to lower values in PDR (from >5.98 to <0.65 pg/
mL), with overall accuracy ≈ 44% (35-53%). 

IL6 cutoffs: <23.8 (control), 23.8-34.3 (DR0), 34.4-
67.0 (NPDR1), 67.1-86.2 (NPDR2), 86.3-288.5 (NPDR3), 
>288.5 pg/mL (PDR), with overall accuracy ≈ 56% (47-
64%). 

post hoc testing (Tukey-Kramer or Dunn’s, according 
to distributional assumptions).

For IL1β, a monotonic increase was observed from 
control to PDR: control, median 2.12 pg/mL (0.89-2.49); 
PDR, 21.86 pg/mL (17.2-28.33), with sequential stepups 
between intermediate classes.

IL4 decreased with increasing DR severity: control, 
9.22 pg/mL (6.89-10.52) to PDR, 1.10 pg/mL (0.64-1.43), 
a pattern compatible with a shift away from a Th2type 
immune profile as DR progresses. 

IL6 exhibited the largest dynamic range (mean±SD), 
rising from 15.7±7.7 pg/mL in controls to 314.3±68.9 
pg/mL in PDR, with a pronounced surge at NPDR3 
(129.2±78.7 pg/mL).

For IL8, a characteristic “peaked” pattern emerged: 
values increased from control 34.8 pg/mL (27.2-41.6) to 
NPDR3 350.1 pg/mL (309.7-369.8), followed by a partial 
decline in PDR to 269.4 pg/mL (226.6-301.9), consistent 
with a chemoattractant/proangiogenic axis predomi-
nating at nonproliferative stages and transitioning into 
a remodeling phase thereafter [27].

To analyze AH interleukin levels across DR stages and 
to evaluate their association with stagewise progres-
sion, we selected optimal thresholds using a OnevsAll 
multiclass classification approach [25]. 

Table 2. Analytical performance of stage prediction according to aqueous humor interleukin concentrations at different stages of diabetic retinopathy

Metric
Study group

Control DR0 NPDR1 NPDR2 NPDR3 PDR

IL-1β, pg/mL

Cutoff <2.98 2.98-6.21 6.22-7.87 7.88-8.35 8.36-13.68 >13.68

Sensitivity, % 100 73.3 17.5 4.0 75.0 100

Specificity, % 84.5 77.5 91.6 100 100 99.1

Overall accuracy, % 53% (CI 44% – 62%)

IL-4, pg/mL

Cutoff >5.98 5.98-4.20 4.19-3.10 3.11-1.84 1.83-0.65 <0.65

Sensitivity, % 96.0 46.7 20.0 40.0 41.7 27.8

Specificity, % 83.6 90.0 92.6 93.6 86.2 96.6

Overall accuracy, % 44% (CI 35% – 53%)

IL-6, pg/mL

Cutoff <23.8 23.8-34.3 34.4-67.0 67.1-86.2 86.3-288.5 >288.5

Sensitivity, % 92.0 46.7 62.5 0 58.3 72.2

Specificity, % 90.0 90.0 69.5 100 95.9 100

Overall accuracy, % 56% (CI 47% – 64%)

IL-8 pg/mL

Cutoff <54.7 54.7-70.3 70.4-113.8 113.9-256.5 256.6-351.2 >351.2

Sensitivity, % 100 26.7 32.5 76.0 50.0 66.7

Specificity, % 70.2 94.7 94.4 96.2 100 96.6

Overall accuracy, % 58% (CI 49% – 67%)
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with an acceptable balance of sensitivity and specificity. 
For IL8, the corresponding thresholds 70.4-216.9 and 

> 216.9 pg/mL yielded 62.2% (95% CI 53.2-70.7) accura-
cy, supporting its role as an auxiliary marker in the bi-
nary model. By contrast, IL1β (6.22-8.24 and > 8.24 pg/
mL) and IL4 (1.83-4.18 and < 1.83 pg/mL) each achieved 
≈ 55.6% accuracy, indicating limited practical utility for 
distinguishing mild/moderate from severe DR. 

Taken together, Figure 2 and Table 3 illustrate the 
translation of continuous interleukin changes into a 
parsimonious prognostic scale, with IL6 emerging as 
the primary single local biomarker for rapid risk strat-
ification.

To align the biochemical profile with the clinicalmeta-
bolic context, we computed Spearman rank correlations 
between AH interleukin levels and age, diabetes dura-
tion, fasting glucose, HbA1c, and Cpeptide (Figure 3). 

The expected pattern of weaktomoderate correlations 
emerged: positive associations for inflammatory/angio-
genic markers – particularly IL6 and IL8 – with diabetes 

IL8 cutoffs respectively: <54.7, 54.3-70.3, 70.4-113.8, 
113.9-256.5, 256.6-351.2, >351.2 pg/mL, with overall 
accuracy ≈ 58% (49–67%). 

Thus, in the sixclass formulation, all four interleukins 
provided better metrics at the extremes (control, PDR) 
due to high specificity, with expected distributional 
overlap among adjacent NPDR categories that limited 
classbyclass discrimination (Figure 1, Table 2).

To account for the continuous biology of DR progres-
sion and the discrete nature of the ICDR clinical scale 
- and to improve analytical performance - we applied 
clinically relevant binarization of phenotypes into two 
integrated groups: mild/moderate DR (NPDR1 + NPDR2) 
and severe DR (NPDR3 + PDR) (Figure 2).

On Figure 2 the binary thresholds are summarized, 
while Table 3 reports their analytical characteristics 
(sensitivity, specificity, accuracy). Among the markers, 
IL6 performed best: 34.4–86.2 pg/mL corresponded to 
mild/moderate DR, whereas > 86.2 pg/mL indicated se-
vere DR; overall accuracy was 72.6% (95% CI 64.3–79.9) 

Figure 1. Aqueous humor interleukin concentrations by group; yaxis: interleukin concentration (pg/mL).  
Cutoff values (pg/mL) used for DR stage prediction are indicated on the plots.
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with advancing DR stage. In a clinically relevant binary 
framework (mild/moderate vs severe DR), IL6 showed 
the highest discriminative performance (overall accu-
racy 72.6%), whereas IL1β and IL4 were weak classifiers 
in our cohort, and IL8 functioned as an auxiliary marker 
with better specificity at the extremes. This hierarchy 
accords with contemporary concepts on the central 
role of IL6 in retinal microvascular dysfunction – in-
cluding transsignaling via sIL6R (soluble interleukin 6 
receptor)/gp130 (glycoprotein 130) – which integrates 
neuroinflammation, endothelial hyperpermeability, 
and hypoxiadriven cascades [28-31].

The biological rationale for this hierarchy is well 
explained by current insights into NLRP3mediated 
inflammation, IL6 transsignaling, and neutrophil che-
moattraction [32]. Hyperglycemia activates the NLRP3 
inflammasome, triggering IL1β and IL18 release, pyro-
ptotic death within the retinal neurovascular unit, and 
disruption of the blood-retinal barrier (BRB) [32]. These 

duration and selected indices of carbohydrate metabo-
lism, and negative associations for IL4 and Cpeptide (as an 
indicator of βcell reserve). Several pairs reached p<0.05; 
however, the absolute magnitudes remained within the 
weak/moderate range, consistent with the local (intraocu-
lar) nature of the markers compared with systemic metrics. 

This correlation profile strengthens the biologic 
plausibility of the proposed thresholds: as diabetes 
duration increases and/or glycemic control deteriorates, 
neuroinflammatory/angiogenic indicators shift toward 
higher ranges, whereas the regulatory IL4 decreases; at 
the same time, a substantial portion of variance is extra-
systemic, i.e., driven by local ocular processes, further 
justifying AH as a target matrix for biomarker analysis.

DISCUSSION
Our findings confirm that the AH exhibits a clear proin-
flammatory/proangiogenic gradient across analytes 

Figure 2. Threshold interleukin levels in aqueous humor (integrated groups); yaxis: interleukin concentration (pg/mL).  
Cutoff values (pg/mL) are shown for predicting mild and moderate DR (NPDR2 and NPDR3 groups) and severe DR (NPDR3 and PDR groups).
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manifests as a general downward trend without a clear 
demarcation between adjacent stages. Consequently, 
within a binary severity framework, IL4 offers limited 
value as a “rulein/ruleout” marker despite its evident 
biological relevance.

The literature contains substantial evidence linking 
intraocular IL6 with DR/DME phenotypes, reinforcing 
the external plausibility of our conclusion that IL6 is 
the priority biomarker for binary stratification. Recent 
reviews consistently demonstrate associations between 
elevated IL6 in aqueous/vitreous humor and retinal 
edema, microvascular disorganization, and concordant 
imaging changes, underscoring the conceptual nodal 
role of IL6 along the DR-DME pathobiologic axis [39, 
40]. In addition, multiomics studies of AH delineate 
protein networks in which IL6 occupies a central po-
sition among inflammatory and extracellularmatrix 
remodeling mediators, aligning with our empirical 
identification of IL6 as the most informative single local 
indicator of DR severity for a clinically relevant twoclass 
model [31,42]. Collectively, these data support the use 
of IL6 threshold intervals as a practical instrument for 
risk stratification in routine clinical scenarios [40].

The stagedependent behavior of IL8 in our cohort – 
marked elevation through NPDR3 with a relative decrease 

pathways – corroborated by experimental data, clinical 
specimens, and systematic reviews [32-34] – provide 
the substrate for the pleiotropic actions of IL6 and the 
proangiogenic/chemokine effects of IL8.

In the literature, IL1β is consistently linked to BRB dys-
function (NFκB activation, oxidative stress, mitochondrial 
injury) and pyroptosis [35], as well as to pericyte loss 
[36], a classic early hallmark of diabetic microangiopa-
thy [37]. Although elevated IL1β has been repeatedly 
documented in retinal tissue and intraocular fluids in 
experimental diabetes and in patients with PDR, our 
classification analyses – unsurprisingly – revealed overlap 
of IL1β concentrations between adjacent NPDR stages, 
leading to low overall accuracy despite high specificity 
at the extremes (DR0, PDR). Thus, IL1β emerges as a 
sensitive indicator of retinal inflammatory activity but 
not a reliable stratifier of DR severity.

A similar rationale applies to IL4. As a Th2 associated 
immunomodulator, IL4 has been shown to protect 
pericytes, reduce endothelial permeability, and mod-
ulate the microglial response via signal transducer and 
activator of transcription6 (STAT6)-dependent mecha-
nisms [38]. However, in realworld clinical settings – amid 
variability in glycemia, diabetes duration, and other 
systemic parameters – the antiinflammatory axis of IL4 

Table 3. Analytical performance of predictions based on aqueous humor interleukin concentrations (integrated groups)

Metric
DR stage

Control DR0 Mild & Moderate DR Severe DR

IL-1β, pg/mL

Cutoff <2.98 2.98-6.21 6.22-8.24 >8.24

Sensitivity, % 88.0 73.3 23.1 90.0

Specificity, % 84.5 90.0 98.6 96.2

Overall accuracy, % 55.6% (CI 46.8% – 64.1%)

IL-4, pg/mL

Cutoff >5.98 4.19-5.98 1.83-4.18 <1.83

Sensitivity, % 96.0 46.7 36.9 66.0

Specificity, % 83.6 91.7 88.6 89.5

Overall accuracy, % 55.6% (CI 46.8% – 64.1%)

IL-6, pg/mL

Cutoff <23.8 23.8-34.3 34.4-86.2 >86.2

Sensitivity, % 80.0 46.7 70.8 83.3

Specificity, % 90.0 92.5 84.3 100

Overall accuracy, % 72.6% (CI 64.3% – 79.9%)

IL-8, pg/mL

Cutoff <54.7 54.8-
70.3 70.4-216.9 >216.9

Sensitivity, % 95.7 26.7 50.8 83.3

Specificity, % 70.2 96.4 91.9 98.1

Overall accuracy, % 62.2% (CI 53.2% – 70.7%)
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in PDR – explains why it underperforms IL6 in binary 
metrics despite strong specificity at the extremes. Broader 
transitional ranges between adjacent classes produce 
overlap and reduce overall accuracy. This pattern accords 
with aggregated clinicallaboratory observations in which 
IL8 consistently associates with inflammatory activity, 
edema severity, and microvascular remodeling, more 
reliably flagging phases of maximal activity than faithfully 
mirroring gradations of process severity across DR [22, 43].

The conceptual framework for interpreting our molec-
ular thresholds is their concordance with quantitative 
imaging of retinal microperfusion. OCTA data indicate 
that the earliest alterations are localized to the DCP, 
characterized by perivenular capillary rarefaction and 
an expansion of nonperfusion, which correlate with the 
occurrence of complications and with DR progression 
[44]. Moreover, in a subset of patients, applied OCTA 
metrics – such as the algorithmic diabetic macular 
ischemia (DMI) index, branching/fragmentation indices, 
and foveal avascular zone (FAZ)derived parameters – 
carry prognostic value [45-49].

Against this backdrop, IL6 threshold intervals can 
serve as a molecular complement to the structural-per-
fusion signal: OCTA tracks the consequences of micro-
vascular dysfunction, whereas the AH composition 
captures the active biochemical processes sustaining 
it. Integrating these domains thus provides the basis 
for individualized risk assessment of DR progression 
within a unified clinical strategy [50]. 

The correlation analysis merits separate consideration 
as a tool for aligning local AH interleukin dynamics with 
the systemic background of DR (age, diabetes duration, 

fasting glucose, HbA1c, Cpeptide). The observed weakto-
moderate correlations are methodologically expected: in 
biomedical datasets, correlation coefficients are seldom 
large and should be interpreted not solely by ρ, but pri-
marily through effect size and clinical significance [51, 52]. 
More broadly, published correlational effect sizes in clinical 
sciences tend to cluster within the small/moderate range 
[53], underscoring the value of combining molecular and 
imaging indicators to enhance prognostic sensitivity.

Substantively, the positive correlations of IL6/IL8 with 
diabetes duration and with selected glycemic indices 
mirror established epidemiological patterns: disease 
duration and metabolic milieu (including HbA1c 
variability) are associated with DR risk/progression, 
although their direct influence on local intraocular 
mediators remains incompletely defined [54-56]. Con-
versely, the inverse correlations with Cpeptide – char-
acteristic of regulatory parameters in our sample – are 
consistent with reports on the prognostic relevance of 
postprandial Cpeptide levels and Cpeptide-to-glucose 
ratios for DR risk stratification in type 2 diabetes [57, 
58]. Importantly, these systemic factors explain only 
a limited proportion of the variability in intraocular 
interleukin levels; the major contribution arises from 
local ocular processes, as supported by contemporary 
profiling studies [42].

A key methodological anchor of our approach is its 
continuity with previously validated local biomarkers 
in aqueous humor within the same disease model, 
particularly HIF1α as an indicator of hypoxic load: an 
analogous thresholdbased and binary framework 
provided practical utility for severity stratification in 
our prior work [17]. This concordance strengthens the 
credibility of interpreting local threshold readouts and 
furnishes a rationale for their subsequent integration 
into a composite diagnostic panel.

Practical implications for clinical management can be 
summarized as follows. First, IL6 should be considered 
a primary local risk indicator in patients with DR: values 
above the upper bound of the mild/moderate interval 
in our dataset (>86.2 pg/mL) support classification 
into the severe DR group and justify shorter followup 
intervals with targeted OCT/OCTA surveillance, whereas 
values within the mild/moderate interval may support 
standard visit frequency with emphasis on optimizing 
systemic metabolic risk factors for DR. 

Second, IL8 may be used as an adjunct to corroborate 
polar phenotypes; however, midspectrum interpreta-
tion warrants caution because of broader interclass 
overlap. 

Third, IL1β and IL4 do not provide decisive standalone 
information in the binary framework, limiting their 
use as solitary cutoffs; their application appears more 

Figure 3. Spearman rank correlation coefficients for AH interleu-
kins versus age, diabetes duration, fasting blood glucose, HbA1c, 
and Cpeptide; yaxis: correlation coefficient. * indicates p<0.05.
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CONCLUSIONS
1.	� We observed significant betweengroup differences 

in AH interleukin levels (all p<0.001): IL1β and IL6 in-
creased with advancing stage; IL8 peaked at NPDR3 
with a relative decline in PDR; IL4 progressively 
decreased as DR progressed. 

2.	� In the multiclass model, singleanalyte performance 
yielded only moderate overall accuracy (IL6 ≈56%, 
IL8 ≈58%, IL1β ≈53%, IL4 ≈44%), with the best 
discrimination at the extremes – findings that sup-
ported a shift to binary stratification. 

3.	� In the binary model (mild/moderate vs severe DR), 
IL6 demonstrated the highest informativeness (accu-
racy 72.6%, 95% CI 64.3-79.9), IL8 provided auxiliary 
value (62.2%), whereas IL1β and IL4 were of limited 
practical utility for classification. 

4.	� Operational cutoffs for clinical management were es-
tablished: for IL6 – 34.4-86.2 pg/mL (mild/moderate 
DR) and >86.2 pg/mL (severe DR); for IL8 – >216.9 
pg/mL as a supportive indicator of severe DR. 

5.	� Correlation analysis confirmed weaktomoderate 
positive associations of IL6/IL8 with diabetes dura-
tion and selected glycemic indices, and inverse cor-
relations with Cpeptide, characteristic of regulatory 
parameters. This profile reflects the local nature of 
AH mediators and supports the biological plausibil-
ity of the proposed thresholds. 

6.	� IL6 can serve as a primary local risk marker to identify 
patients with a high likelihood of severe DR who 
warrant shortened followup intervals and intensified 
structural-functional surveillance using OCTA. Next 
steps include external validation of numeric cutoffs, 
preanalytical standardization, and prospective stud-
ies evaluating clinically meaningful endpoints.

promising within combined panels subject to external 
validation [47,50].

Strengths of the study include a singlecohort design 
with consistent AH sampling, centralized and standard-
ized preanalytics within one center, and a harmonized 
statistical framework (threshold intervals; multiclass and 
binary models with estimates of sensitivity, specificity, and 
overall accuracy), all of which ensured internal coherence 
of conclusions and reproducibility of the interpretive 
logic. Corroboration by independent sources (reviews/
analyses on interleukins, AH proteomics, and OCTA met-
rics) enhances the external validity of the key conclusion 
prioritizing IL6 in binary stratification [39, 41, 45].

Limitations include the singlecenter, crosssectional 
design without evaluation of downstream clinical out-
comes, which constrains causal inference and limits 
generalizability of numeric thresholds. Class imbalance 
across stages (uneven group representation) may 
influence the stability of certain metrics – particularly 
accuracy – in external datasets, despite the invariance 
of ROC curves to class prevalence; hence the need for 
external testing in representative cohorts [59, 60]. 

Results may also be affected by preanalytical factors 
(storage duration/conditions, freeze–thaw cycles) and 
crossplatform differences among immunoassay methods 
(ELISA, multiplex systems). Although unified procedures were 
followed, contemporary guidance recommends protocol 
standardization and interlaboratory comparison prior to 
routine implementation of quantitative cutoffs [61-63]. Finally, 
the absence of longterm followup precludes assessment of 
the prognostic value of the proposed thresholds for clinically 
meaningful endpoints (progression to NPDR3/PDR, devel-
opment of DME), defining priorities for future multicenter 
prospective studies with independent external validation [64].
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